Pharmacological Blockade of TRPM8 Ion Channels Alters Cold and Cold Pain Responses in Mice
نویسندگان
چکیده
TRPM8 (Transient Receptor Potential Melastatin-8) is a cold- and menthol-gated ion channel necessary for the detection of cold temperatures in the mammalian peripheral nervous system. Functioning TRPM8 channels are required for behavioral responses to innocuous cool, noxious cold, injury-evoked cold hypersensitivity, cooling-mediated analgesia, and thermoregulation. Because of these various roles, the ability to pharmacologically manipulate TRPM8 function to alter the excitability of cold-sensing neurons may have broad impact clinically. Here we examined a novel compound, PBMC (1-phenylethyl-4-(benzyloxy)-3-methoxybenzyl(2-aminoethyl)carbamate) which robustly and selectively inhibited TRPM8 channels in vitro with sub-nanomolar affinity, as determined by calcium microfluorimetry and electrophysiology. The actions of PBMC were selective for TRPM8, with no functional effects observed for the sensory ion channels TRPV1 and TRPA1. PBMC altered TRPM8 gating by shifting the voltage-dependence of menthol-evoked currents towards positive membrane potentials. When administered systemically to mice, PBMC treatment produced a dose-dependent hypothermia in wildtype animals while TRPM8-knockout mice remained unaffected. This hypothermic response was reduced at lower doses, whereas responses to evaporative cooling were still significantly attenuated. Lastly, systemic PBMC also diminished cold hypersensitivity in inflammatory and nerve-injury pain models, but was ineffective against oxaliplatin-induced neuropathic cold hypersensitivity, despite our findings that TRPM8 is required for the cold-related symptoms of this pathology. Thus PBMC is an attractive compound that serves as a template for the formulation of highly specific and potent TRPM8 antagonists that will have utility both in vitro and in vivo.
منابع مشابه
Variable threshold of trigeminal cold-thermosensitive neurons is determined by a balance between TRPM8 and Kv1 potassium channels.
Molecular determinants of threshold differences among cold thermoreceptors are unknown. Here we show that such differences correlate with the relative expression of I(KD), a current dependent on Shaker-like Kv1 channels that acts as an excitability brake, and I(TRPM8), a cold-activated excitatory current. Neurons responding to small temperature changes have high functional expression of TRPM8 (...
متن کاملContribution of TRPM8 channels to cold transduction in primary sensory neurons and peripheral nerve terminals.
Transient receptor potential melastatin 8 (TRPM8) is the best molecular candidate for innocuous cold detection by peripheral thermoreceptor terminals. To dissect out the contribution of this cold- and menthol-gated, nonselective cation channel to cold transduction, we identified BCTC [N-(4-tert-butylphenyl)-4-(3-chloropyridin-2-yl)piperazine-1-carboxamide] as a potent and full blocker of recomb...
متن کاملTRPM8 Is Required for Cold Sensation in Mice
ThermoTRPs, a subset of the Transient Receptor Potential (TRP) family of cation channels, have been implicated in sensing temperature. TRPM8 and TRPA1 are both activated by cooling; however, it is unclear whether either ion channel is required for thermosensation in vivo. We show that mice lacking TRPM8 have severe behavioral deficits in response to cold stimuli. In thermotaxis assays of temper...
متن کاملA sensory-labeled line for cold: TRPM8-expressing sensory neurons define the cellular basis for cold, cold pain, and cooling-mediated analgesia.
Many primary sensory neurons are polymodal, responding to multiple stimulus modalities (chemical, thermal, or mechanical), yet each modality is recognized differently. Although polymodality implies that stimulus encoding occurs in higher centers, such as the spinal cord or brain, recent sensory neuron ablation studies find that behavioral responses to different modalities require distinct subpo...
متن کاملArtemin, a glial cell line-derived neurotrophic factor family member, induces TRPM8-dependent cold pain.
Chronic pain associated with injury or disease can result from dysfunction of sensory afferents whereby the threshold for activation of pain-sensing neurons (nociceptors) is lowered. Neurotrophic factors control nociceptor development and survival, but also induce sensitization through activation of their cognate receptors, attributable, in part, to the modulation of ion channel function. Therm...
متن کامل